CS 188: Artificial Intelligence Spring 2010

Lecture 8: MEU / Utilities 2/11/2010

Pieter Abbeel - UC Berkeley
Many slides over the course adapted from Dan Klein

Announcements

- W2 is due today (lecture or drop box)
- P2 is out and due on 2/18

Expectimax Search Trees

- What if we don't know what the result of an action will be? E.g.,
- In solitaire, next card is unknown
- In minesweeper, mine locations
- In pacman, the ghosts act randomly
- Can do expectimax search
- Chance nodes, like min nodes,
except the outcome is uncertai
- Calculate expected utilities
- Max nodes as in minimax search

Chance nodes take average (expectation) of value of children

- Later, we'll learn how to formalize the underlying problem as a Markov Decision Process

Maximum Expected Utility

- Why should we average utilities? Why not minimax?
- Principle of maximum expected utility: an agent should choose the action which maximizes its expected utility, given its knowledge
- General principle for decision making
- Often taken as the definition of rationality
- We'll see this idea over and over in this course!
- Let's decompress this definition.
- Probability --- Expectation --- Utility

Reminder: Probabilities

- A random variable represents an event whose outcome is unknown

What are Probabilities?

- Objectivist / frequentist answer:
- Averages over repeated experiments
- E.g. empirically estimating $\mathrm{P}($ rain $)$ from historical observation
- Assertion about how future experiments will go (in the limit)
- New evidence changes the reference class
- Makes one think of inherently random events, like rolling dice
- Random variable: $\mathrm{T}=$ amount of trafic
- Outcomes: T in \{none, light, heavy\}
- Distribution: $P(T=$ none $)=0.25, P(T=$ light $)=0.55, P(T=$ heavy $)=0.20$
- Some laws of probability (more later)
- Probabilities are always non-negative
- Probabilities over all possible outcomes sum to one
- As we get more evidence, probabilities may change
- $\mathrm{P}(\mathrm{T}=$ heavy $)=0.20, \mathrm{P}(\mathrm{T}=$ heavy \mid Hour $=8 \mathrm{am})=0.60$
- We'll talk about methods for reasoning and updating probabilities later
- Subjectivist / Bayesian answer:
- Degrees of belief about unobserved variables
- E.g. an agent's belief that it's raining, given the temperature
- E.g. pacman's belief that the ghost will turn left, given the state
- Often learn probabilities from past experiences (more later)
- New evidence updates beliefs (more later)

Uncertainty Everywhere

- Not just for games of chance!
- I'm sick: will I sneeze this minute?
- Email contains "FREE!": is it spam?
- Tooth hurts: have cavity?
- 60 min enough to get to the airport?
- Robot rotated wheel three times, how far did it advance?
- Safe to cross street? (Look both ways!)
- Sources of uncertainty in random variables
- Inherently random process (dice, etc)
- Insufficient or weak evidence
- Ignorance of underlying processes
- Unmodeled variables
- The world's just noisy - it doesn't behave according to plan

Utilities

- Utilities are functions from outcomes (states of the world) to real numbers that describe an agent's preferences
- Where do utilities come from?
- In a game, may be simple (+1/-1)
- Utilities summarize the agent's goals
- Theorem: any set of preferences between outcomes can be summarized as a utility function (provided the preferences meet certain conditions)
- In general, we hard-wire utilities and let actions emerge (why don't we let agents decide their own utilities?)
- More on utilities soon...

Expectimax Search

- Chance nodes
- Chance nodes are like min nodes, except the outcome is uncertain
- Calculate expected utilities
- Chance nodes average successor values (weighted)
- Each chance node has a probability distribution over its outcomes (called a model)
- For now, assume we're given the model
- Utilities for terminal states
- Static evaluation functions give us limited-depth search

Reminder: Expectations

- We can define function $f(X)$ of a random variable X
- The expected value of a function is its average value, weighted by the probability distribution over inputs
- Example: How long to get to the airport?
- Length of driving time as a function of traffic L (none) $=20, L$ (light) $=30, L$ (heavy) $=60$
- What is my expected driving time?
- Notation: $\mathrm{E}[\mathrm{L}(\mathrm{T})]$
- Remember, $\mathrm{P}(\mathrm{T})=\{$ none: 0.25 , light: 0.5 , heavy: 0.25$\}$
- $\mathrm{E}[\mathrm{L}(\mathrm{T})]=\mathrm{L}($ none $) * \mathrm{P}($ none $)+\mathrm{L}($ light $) * P($ light $)+\mathrm{L}($ heavy $) * \mathrm{P}($ heavy $)$
- $\mathrm{E}[\mathrm{L}(\mathrm{T})]=(20 * 0.25)+(30 * 0.5)+(60 * 0.25)=35$

Expectimax Search

- In expectimax search, we have a probabilistic model of how the opponent (or environment) will
- Mave could be
uniform distribution (roll
Model could be sophisticated and require a great deal of computation
- We have a node for every outcome out of our control: opponent or environment
The model might say that adversarial actions are likely!
- For now, assume for any state we magically have a distribution to assign probabilities to opponent actions / environmen outcomes

Having a probabilistic belief about an agent's action does not mean that agent is flipping any coins!

Expectimax Pseudocode

def value(s)

if s is a max node return maxValue(s)
if s is an exp node return expValue(s)
if s is a terminal node return evaluation(s)
def maxValue(s)
values = [value(s') for s' in successors(s)]
return max(values)

def expValue(s)

values $=$ [value(s') for s' in successors(s)]
weights $=[$ probability(s, s') for s' in successors(s) $]$
return expectation(values, weights)

Expectimax Evaluation

- Evaluation functions quickly return an estimate for a node's true value (which value, expectimax or minimax?)
- For minimax, evaluation function scale doesn't matter
- We just want better states to have higher evaluations (get the ordering right)
- We call this insensitivity to monotonic transformations
- For expectimax, we need magnitudes to be meaningful

x^{2}

Mixed Layer Types

- E.g. Backgammon
- Expectiminimax
- Environment is an extra player that moves after each agent
- Chance nodes take expectations, otherwise like minimax

ExpectiMinimax-Value(state):
if state is a MAX node then
return the highest ExpectiMinimax- Value of Successors(state)
if state is a MIN node then
return the lowest ExpectiMinimax-VALUE of Successors(state)
if state is a chance node then
return average of ExpectiMinimax-VALuE of Successors (state)

Maximum Expected Utility

- Principle of maximum expected utility:
- A rational agent should choose the action which maximizes its expected utility, given its knowledge
- Questions:
- Where do utilities come from?
- How do we know such utilities even exist?
- Why are we taking expectations of utilities (not, e.g. minimax)?
- What if our behavior can't be described by utilities?

Utilities: Unknown Outcomes

Preferences

- An agent chooses among:
- Prizes: A, B, etc.
- Lotteries: situations with uncertain prizes

$$
L=[p, A ;(1-p), B]
$$

- Notation:
$A \succ B \quad A$ preferred over B
$A \sim B \quad$ indifference between A and B
$A \succeq B \quad B$ not preferred over A

Rational Preferences

- We want some constraints on preferences before we call $\quad(A \succ B) \wedge(B \succ C) \Rightarrow(A \succ C)$ them rational
- For example: an agent with intransitive preferences can be induced to give away all of its money
- If B > C, then an agent with C would pay (say) 1 cent to get B
- If $A>B$, then an agent with B would pay (say) 1 cent to get A
- If C > A, then an agent with A would pay (say) 1 cent to get C

Rational Preferences

- Preferences of a rational agent must obey constraints.
- The axioms of rationality:

Orderability
$(A \succ B) \vee(B \succ A) \vee(A \sim B)$
Transitivity
$(A \succ B) \wedge(B \succ C) \Rightarrow(A \succ C)$
Continuity
$A \succ B \succ C \Rightarrow \exists p[p, A ; 1-p, C] \sim B$
Substitutability
$A \sim B \Rightarrow[p, A ; 1-p, C] \sim[p, B ; 1-p, C]$
Monotonicity
$A \succ B \Rightarrow$
$(p \geq q \Leftrightarrow[p, A ; 1-p, B] \succeq[q, A ; 1-q, B])$

- Theorem: Rational preferences imply behavior describable as maximization of expected utility

MEU Principle

- Theorem:
- [Ramsey, 1931; von Neumann \& Morgenstern, 1944]
- Given any preferences satisfying these constraints, there exists a real-valued function U such that:

$$
\begin{aligned}
& U(A) \geq U(B) \Leftrightarrow A \succeq B \\
& U\left(\left[p_{1}, S_{1} ; \ldots ; p_{n}, S_{n}\right]\right)=\sum_{i} p_{i} U\left(S_{i}\right)
\end{aligned}
$$

- Maximum expected utility (MEU) principle:
- Choose the action that maximizes expected utility
- Note: an agent can be entirely rational (consistent with MEU) without ever representing or manipulating utilities and probabilities
- E.g., a lookup table for perfect tictactoe

Utility Scales

- Normalized utilities: $u_{+}=1.0, u_{-}=0.0$
- Micromorts: one-millionth chance of death, useful for paying to reduce product risks, etc
- QALYs: quality-adjusted life years, useful for medical decisions nvolving substantial risk
- Note: behavior is invariant under positive linear transformation

$$
U^{\prime}(x)=k_{1} U(x)+k_{2} \quad \text { where } k_{1}>0
$$

- With deterministic prizes only (no lottery choices), only ordinal utility can be determined, i.e., total order on prizes

Human Utilities

- Utilities map states to real numbers. Which numbers?
- Standard approach to assessment of human utilities:
- Compare a state A to a standard lottery L_{p} between
- "best possible prize" u_{+}with probability p
- "worst possible catastrophe" u_ with probability 1-p
- Adjust lottery probability p until $A \sim L_{p}$

Resulting p is a utility in $[0,1]$
pay $\$ 30$

Money

- Money does not behave as a utility function, but we can talk about the utility of having money (or being in debt)
- Given a lottery L = [p, \$X; (1-p), \$Y]
- The expected monetary value $\operatorname{EMV}(\mathrm{L})$ is $\mathrm{p}^{*} \mathrm{X}+(1-p)^{*} \mathrm{Y}$
- $U(L)=p^{*} U(\$ X)+(1-p)^{*} U(\$ Y)$
- Typically, $\mathrm{U}(\mathrm{L})<\mathrm{U}(\mathrm{EMV}(\mathrm{L}))$: why?
- In this sense, people are risk-averse
- When deep in debt, we are risk-prone
- Utility curve: for what probability p am I indifferent between:
- Some sure outcome x
- A lottery [p,\$M; (1-p),\$0], M large

Example: Insurance

- Because people ascribe different utilities to different amounts of money, insurance agreements can increase both parties' expected utility

You own a car. Your lottery:
$L_{Y}=[0.8, \$ 0 ; 0.2,-\$ 200]$
i.e., 20% chance of crashing

You do not want -\$200!

Amount	Your Utility U_{Y}
$\$ 0$	0
$-\$ 50$	-150
$-\$ 200$	-1000

$U_{Y}\left(L_{Y}\right)=0.2^{*} U_{Y}(-\$ 200)=-200$
$U_{Y}(-\$ 50)=-150$

Example: Insurance

- Consider the lottery [0.5,\$1000; $0.5, \$ 0$]
- What is its expected monetary value? (\$500)
- What is its certainty equivalent?
- Monetary value acceptable in lieu of lottery
- \$400 for most people
- Difference of \$100 is the insurance premium
- There's an insurance industry because people will pay to reduce their risk
- If everyone were risk-neutral, no insurance needed!

Example: Insurance

- Because people ascribe different utilities to different amounts of money, insurance agreements can increase both parties' expected utility

You own a car. Your lottery: | Insurance company buys risk:
$L_{Y}=[0.8, \$ 0 ; 0.2,-\$ 200]$
i.e., 20% chance of crashing

You do not want -\$200!
$L_{1}=[0.8, \$ 50 ; 0.2,-\$ 150]$
i.e., $\$ 50$ revenue + your L_{Y}

Insurer is risk-neutral:
$\mathrm{U}(\mathrm{L})=\mathrm{U}(\mathrm{EMV}(\mathrm{L}))$
$U_{Y}\left(L_{Y}\right)=0.2^{*} U_{Y}(-\$ 200)=-200$
$U_{Y}(-\$ 50)=-150$
$U_{1}\left(L_{1}\right)=U\left(0.8^{*} 50+0.2^{*}(-150)\right)$ $=U(\$ 10)>U(\$ 0)$

Example: Human Rationality?

- Famous example of Allais (1953)
- A: [0.8,\$4k; 0.2,\$0]
- B: [1.0,\$3k; 0.0,\$0]
- C: [0.2,\$4k; 0.8,\$0]
- D: [0.25,\$3k; 0.75,\$0]
- Most people prefer B > A, C > D
- But if $\mathrm{U}(\$ 0)=0$, then
- $\mathrm{B}>\mathrm{A} \Rightarrow \mathrm{U}(\$ 3 \mathrm{k})>0.8 \mathrm{U}(\$ 4 \mathrm{k})$
- $\mathrm{C}>\mathrm{D} \Rightarrow 0.8 \mathrm{U}(\$ 4 \mathrm{k})>\mathrm{U}(\$ 3 \mathrm{k})$

